Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Mineral phase transitions can either hinder or accelerate mantle flow. In the present day, the formation of the bridgmanite + ferropericlase assemblage from ringwoodite at 660 km depth has been found to cause weak and intermittent layering of mantle convection. However, for the higher temperatures in Earth's past, different phase transitions could have controlled mantle dynamics. We investigate the potential changes in convection style during Earth's secular cooling using a new numerical technique that reformulates the energy conservation equation in terms of specific entropy instead of temperature. This approach enables us to accurately include the latent heat effect of phase transitions for mantle temperatures different from the average geotherm, and therefore fully incorporate the thermodynamic effects of realistic phase transitions in global‐scale mantle convection modeling. We set up 2‐D models with the geodynamics softwareAspect, using thermodynamic properties computed by HeFESTo, while applying a viscosity profile constrained by the geoid and mineral physics data and a visco‐plastic rheology to reproduce plate‐like behavior and Earth‐like subduction morphologies. Our model results reveal the layering of plumes induced by the wadsleyite to garnet (majorite) + ferropericlase endothermic transition (between 450 and 590 km depth and over the 2000–2500 K temperature range). They show that this phase transition causes a large‐scale and long‐lasting temperature elevation in a depth range of 500–650 km depth if the potential temperature of the mantle is higher than 1800 K, indicating that mantle convection may have been partially layered in Earth's early history.more » « lessFree, publicly-accessible full text available February 1, 2026
-
SUMMARY Phase transitions play an important role for the style of mantle convection. While observations and theory agree that a substantial fraction of subducted slabs and rising plumes can move through the whole mantle at present day conditions, this behaviour may have been different throughout Earth’s history. Higher temperatures, such as in the early Earth, cause different phase transitions to be dominant, and also reduce mantle viscosity, favouring a more layered style of convection induced by phase transitions. A period of layered mantle convection in Earth’s past would have significant implications for the secular evolution of the mantle temperature and the mixing of mantle heterogeneities. The transition from layered to whole mantle convection could lead to a period of mantle avalanches associated with a dramatic increase in magmatic activity. Consequently, it is important to accurately model the influence of phase transitions on mantle convection. However, existing numerical methods generally preclude modelling phase transitions that are only present in a particular range of pressures, temperatures or compositions, and they impose an artificial lower limit on the thickness of phase transitions. To overcome these limitations, we have developed a new numerical method that solves the energy equation for entropy instead of temperature. This technique allows for robust coupling between thermodynamic and geodynamic models and makes it possible to model realistically sharp phase transitions with a wide range of properties and dynamic effects on mantle processes. We demonstrate the utility of our method by applying it in regional and global convection models, investigating the effect of individual phase transitions in the Earth’s mantle with regard to their potential for layering flow. We find that the thickness of the phase transition has a bigger influence on the style of convection than previously thought: with all other parameters being the same, a thin phase transition can induce fully layered convection where a broad phase transition would lead to whole-mantle convection. Our application of the method to convection in the early Earth illustrates that endothermic phase transitions may have induced layering for higher mantle temperatures in the Earth’s past.more » « less
An official website of the United States government
